Does water vapor prevent upscaling sonoluminescence?

نویسندگان

  • R Toegel
  • B Gompf
  • R Pecha
  • D Lohse
چکیده

Experimental results for single-bubble sonoluminescence of air bubbles at very low frequency f = 7.1 kHz are presented: In contrast to the predictions of a recent model [S. Hilgenfeldt and D. Lohse, Phys. Rev. Lett. 82, 1036 (1999)], the bubbles are only as bright (10(4)-10(5) photons per pulse) and the pulses as long (approximately 150 ps) as at f = 20 kHz. We can theoretically account for this effect by incorporating water vapor into the model: During the rapid bubble collapse a large amount of water vapor is trapped inside the bubble, resulting in an increased heat capacity and hence lower temperatures, i.e., hindering upscaling. At this low frequency water vapor also dominates the light emission process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sonochemical effects on single-bubble sonoluminescence.

A refined hydrochemical model for single-bubble sonoluminescence (SBSL) is presented. The processes of water vapor evaporation and condensation, mass diffusion, and chemical reactions are taken into account. Numerical simulations of Xe-, Ar- and He-filled bubbles are carried out. The results show that the trapped water vapor in conjunction with its endothermic chemical reactions significantly r...

متن کامل

Temperature inhomogeneity during multibubble sonoluminescence.

When a liquid is subjected to high-intensity ultrasound, bubbles are formed, grow, and implosively collapse. This phenomenon of acoustic cavitation generates both chemical reactions (i.e., sonochemistry) and the emission of light (i.e., sonoluminescence, SL). It is generally agreed that both sonochemistry and sonoluminescence result from the intense compressional heating of gas and vapor inside...

متن کامل

Water Temperature Dependence of Single Bubble Sonoluminescence

The strong dependence of the intensity of single bubble sonoluminescence (SBSL) on water temperature observed in experiment can be accounted for by the temperature dependence of the material constants of water, most essentially of the viscosity, of the argon solubility in water, and of the vapor pressure. The strong increase of light emission at low water temperatures is due to the possibility ...

متن کامل

Suppressing dissociation in sonoluminescing bubbles: the effect of excluded volume.

Recent theoretical work in single-bubble sonoluminescence has suggested that water vapor in the collapsing bubble leads to energy-consuming chemical reactions, restricting the peak temperatures to values for which hardly any light emission could occur. Analyzing the reaction thermodynamics within the dense, collapsed bubble, we demonstrate that the excluded volume of the nonideal gas results in...

متن کامل

Argon rectification and the cause of light emission in single-bubble sonoluminescence.

In single-bubble sonoluminescence, repeated brief flashes of light are produced in a gas bubble strongly driven by a periodic acoustic field. A startling hypothesis has been made by Lohse and co-workers [Phys. Rev. Lett. 78, 1359 (1997)] that the non-noble gases in an air bubble undergo chemical reaction into soluble products, leaving only argon. In the present work, this dissociation hypothesi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 85 15  شماره 

صفحات  -

تاریخ انتشار 2000